翻訳と辞書
Words near each other
・ Inoue Genan Inseki
・ Inoue Genzaburō
・ Inoue Hikaru
・ Inoue house
・ Inoue Kaoru
・ Inoue Kenkabō
・ Inoue Kowashi
・ Inoue Masaharu
・ Inoue Masamoto
・ Inoue Masanao
・ Inoue Masaoto
・ Inoue Masaru (bureaucrat)
・ Inoue Masasada
・ Inoue Masashige
・ Inoue Masatsune
Inoue surface
・ Inoue Tetsujirō
・ Inoue Yoshika
・ Inoue–Hirzebruch surface
・ Inoughissen
・ Inoujście
・ Inouwa
・ Inouyella
・ Inouyia
・ Inova Fairfax Hospital
・ Inova Health System
・ Inovalon
・ Inovce
・ Inovel Romero
・ InOverOurHeads


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Inoue surface : ウィキペディア英語版
Inoue surface
In complex geometry, a part of mathematics, the term
Inoue surface denotes several complex surfaces
of Kodaira class VII. They are
named after Masahisa Inoue, who gave the first non-trivial
examples of Kodaira class VII surfaces in 1974.〔M. Inoue, ''On surfaces of class VII0,'' Inventiones math., 24 (1974), 269–310.〕
The Inoue surfaces are not Kähler manifolds.
==Inoue surfaces with ''b''2 = 0==
Inoue introduced three families of surfaces, ''S''0,
''S''+ and ''S'', which are compact quotients
of \times H (a product of a complex
plane by a half-plane). These Inoue surfaces are
solvmanifolds. They are obtained as quotients of
\times H by a solvable discrete
group which acts holomorphically on \times H.
The solvmanifold surfaces constructed by Inoue all have second Betti number b_2=0. These surfaces are of Kodaira class VII,
which means that they have b_1=1 and Kodaira dimension -\infty. It was proven by Bogomolov,〔Bogomolov, F.: ''Classification of surfaces of class VII0 with ''b''2 = 0, Math. USSR Izv 10, 255–269 (1976)〕 Li-Yau 〔Li, J., Yau, S., T.: ''Hermitian Yang-Mills connections on non-Kahler manifolds,'' Math. aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys. 1, 560–573, World Scientific Publishing (1987)〕 and Teleman〔Teleman, A.: ''Projectively flat surfaces and Bogomolov's theorem on class VII0-surfaces'', Int. J. Math., Vol. 5, No 2, 253–264 (1994)〕 that any surface of class VII
with ''b''2 = 0 is a Hopf surface or an Inoue-type solvmanifold.
These surfaces have no meromorphic functions and no curves.
K. Hasegawa 〔Keizo Hasegawa (''Complex and Kahler structures on Compact Solvmanifolds,'' ) J. Symplectic Geom. Volume 3, Number 4 (2005), 749–767.〕 gives a list of all complex 2-dimensional solvmanifolds; these are complex torus, hyperelliptic surface, Kodaira surface and
Inoue surfaces ''S''0, ''S''+ and ''S''.
The Inoue surfaces are constructed explicitly as follows.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Inoue surface」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.